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Abstract. Within the framework of phenomenological Lagrangians we construct the effective action of
QCD relevant for the study of semileptonic decays of charmed mesons. Hence we evaluate the form factors
of D → P (0−)�+ν� at leading order in the 1/NC expansion and, by demanding their QCD-ruled asymptotic
behavior, we constrain the couplings of the Lagrangian. The features of the model-independent parameter-
ization of form factors are provided, and their relevance for the analysis of experimental data are pointed
out.

1 Introduction

Matrix elements of hadron currents in exclusive processes
provide, from a phenomenological point of view, a detailed
knowledge on the hadronization mechanisms. Their evalu-
ation, however, is a long-standing problem due to the fact
that involves strong interactions in an energy region where
perturbative QCD is unreliable. Within this frame, exclu-
sive semileptonic decays of mesons yield the relevant phys-
ical system to analyze matrix elements of flavor changing
currents.

When only light quark flavors are involved, as in the
K�3 or K�4 processes, the model-independent rigorous
framework of chiral perturbation theory (χPT) allows a
thorough study to be made that has been proven success-
ful [1]. Semileptonic decays of B mesons, on the other side,
can be studied within the heavy quark effective theory
(HQET). This last procedure relies in the fact that, the b
quark being much heavier than ΛQCD (which determines
the typical size of hadrons), the light degrees of freedom
interact independently of the flavor or spin orientation of
the heavy quark. In practice one expands the amplitudes
in inverse powers of the heavy quark mass (ΛQCD/Mb),
and the expansion is most suitable for weak decays where
heavy flavors are involved, i.e. b → c [2].

However charmed mesons decay to light flavors and
the c quark is much lighter than the b quark; therefore and
though the HQET has also been applied to the study of its
semileptonic decays [3,4], involving already a rather cum-
bersome effective action at the next-to-leading order, it is
doubtful that perturbative corrections are small enough
to provide a thorough result. Another approach involves a
mixed framework including HQET and modelizations [5]
that, although predictive, rely in ad hoc assumptions not
well justified. In addition there is no χPT framework ap-

propriate to perform this task either because the c quark
does not belong to its realm. This no-man’s-land position
of charm has brought about a feeble status in the study
of its decays and, in particular, of D�3 semileptonic de-
cays we are interested here. Several analyses exist within
lattice QCD [6], QCD sum rules [7], and models using
phenomenological approaches [8] or quark realizations [9].
Besides, non-leptonic decays of the charmed mesons, that,
up to the present, have only been studied in several mod-
elizations such as factorization [10] or chiral realizations
[11], rely within these models on semileptonic form fac-
tors. Consequently their study is also relevant for those
processes.

From an experimental point of view, while branching
ratios are rather well measured in both D → P�+ν� and
D → V �+ν� processes1 [12], the structure of their form
factors, relying more on the statistics of events, is loosely
known [13]. The E687 and E791 experiments at Fermilab
[14–16], BEATRICE at CERN [17], and CLEO at Cornell
[18–20] have published their analyses and a further im-
provement will continue with FOCUS (E831) in the near
future, with approximately forty times the previous E687
number of events2. Hence form factors in these processes
are expected to be thoroughly studied.

Effective actions of the underlying standard model,
as χPT or HQET, have become excellent frameworks to
carry on analyses of processes of which the relevant physics
properties are embodied in phenomenological Lagrangians
that contain the proper degrees of freedom and symme-
tries. The hadronic system we pretend to describe here

1 If unspecified, P is short for pseudoscalar meson, V for
vector meson, and D is short for D+,0 or D+

s . Charge conjugate
modes are also implied

2 Private communication received from Will Johns
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involves charmed mesons and light pseudoscalar mesons
or vector resonances. The construction of phenomenolog-
ical Lagrangians [21,22] gives us a rigorous path to follow
when both Goldstone bosons (light pseudoscalar mesons)
and matter fields (we include here vector resonances and
charmed pseudoscalar mesons) are involved. In addition
we will implement this formulation with suitable dynami-
cal assumptions based on the properties of a large number
of colors (NC) [23] and the asymptotic behavior of QCD.
These tools have largely been employed together with the
construction of phenomenological Lagrangians in order to
provide an effective action of the underlying strong in-
teracting field theory in the non-perturbative, resonance
dominated, energy region. This procedure has been suc-
cessfully applied to the construction of the resonance chi-
ral theory [24] providing an excellent basis to parameterize
and explore the relevant phenomenology.

Within this frame the goal of this paper is to provide a
model-independent QCD-based parameterization of form
factors suitable for the analyses of the foreseen new data.
To proceed we will construct in Sect. 2 the relevant effec-
tive action of QCD for the study of semileptonic decays of
charmed mesons. Then we will use this action to evaluate
the form factors of the D → P�+ν� processes in Sect. 3 and
we will impose the constraints that the QCD-ruled asymp-
totic behavior of form factors demand on the coupling
constants, completing therefore the construction of the ef-
fective action. This procedure gives a general constrained
parameterization of form factors that relies on symmetry
properties of the underlying QCD theory without appeal-
ing to model-dependent simplifying assumptions. In the
following section, Sect. 4, we will comment on the phe-
nomenology and use of our results in order to analyze the
experimental data of the D → P�+ν� decays. The com-
plete study of the D → V �+ν� processes will be carried
out in a later publication [25]. In Sect. 5 the relevance of
semileptonic processes in determining the couplings of the
effective action is pointed out. A comparison of our results
with those based on the heavy quark mass expansion will
be sketched in Sect. 6 and, finally, Sect. 7 is devoted to our
conclusions.

2 The effective action

The present construction of effective field theories of the
standard model in different energy regions is based on the
theorem put forward by Weinberg in [26] that, schemati-
cally, says that the most general Lagrangian containing all
terms consistent with the demanded symmetry principles
provides general amplitudes with the basic properties of a
quantum field theory.

Massless QCD with three flavors has a spontaneously
broken chiral symmetry that is manifest in the chiral La-
grangian where Goldstone fields ϕi parameterize the ele-
ment u(ϕ) of the coset space G/H ≡ SU(3)L ⊗ SU(3)R/
SU(3)V given by

u(ϕ) = exp
(

i√
2F

Π(ϕ)
)

,

Π(ϕ) =



π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K0 −2 η8√
6


, (1)

where F � 92.4 MeV is the pion decay constant. The
transformation properties of u(ϕ) under the chiral group
G define a non-linear realization of the symmetry through
the compensating transformation h(ϕ) ∈ SU(3)V :

u(ϕ) G−→gRu(ϕ)h(ϕ)† = h(ϕ)u(ϕ)g†
L,

gL(R) ∈ SU(3)L(R). (2)

Non-Goldstone bosons that belong to representations of
SU(3) (hence transforming linearly under this group and
non-linearly under SU(3)L ⊗ SU(3)R) can be included in
the chiral Lagrangian following [22]. We proceed in turn
as follows3.
(1) For the charmed mesons: Charmed pseudoscalar
mesons transform as triplets under SU(3) and we choose
the representation

D ≡
 D0

D−

D−
s

 , D
G−→h(ϕ)D, (3)

and similarly for charmed resonances DR: vector (DV
µ ),

axial-vector (DA
µ ) and scalar (DS). We will introduce dif-

ferent masses for the various triplets of the resonances.
Within every triplet we enforce the SU(3) breaking of
masses, but we keep SU(2) isospin symmetry.
(2) For the light resonances: We are interested in reso-
nances transforming as octets under SU(3). Following [24]
and denoting by R = Vµ, Aµ, S, ... these octets, the non-
linear realization of the chiral group is given by

R
G−→ h(ϕ)Rh(ϕ)†. (4)

The flavor structure of R is analogous to Π in (1). To
study the decays we are interested in we will need light
vector meson resonances that we introduce as Proca fields.

We would like to establish, using the effective fields
above, which is the representation of the generating func-
tional of QCD able to provide matrix elements of charged
currents, responsible for semileptonic decays. To define the
relation of the effective action with QCD we may consider
the effect of external sources J that play the role of aux-
iliary variables [27]. The link between the underlying and
the effective theory is given by the Feynman path integral:

eiΓ [J] = N−1
∫

[dΠ][dD(R)][dR]

× ei
∫

d4xLeff [Π,∂Π,D(R),∂D(R),R,∂R;J,∂J], (5)

3 We do not consider light flavor or charmed singlets in the
following. Their inclusion is straightforward with our procedure
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where N is the integral evaluated at J = 0. Γ [J ] on the
left-hand side is the generating functional of the Green
functions constructed with the operators of the underlying
QCD, while the right-hand side involves the effective field
theory. The invariance of the generating functional under
gauge transformations of the external sources implements
the symmetry properties of the theory.

Therefore the weak interaction is introduced, similarly
to the chiral gauge theory framework, through external
non-propagating fields. To realize the two weak SU(2)L
doublets we now couple the quarks q = (u, d, s, c) to
SU(4)-valued hermitian external fields �̃µ, r̃µ, s̃ and p̃:

L = Lm=0
QCD − mccc +

1
2
qγµ

[
�̃µ(1 − γ5) + r̃µ(1 + γ5)

]
q

− q(s̃ − ip̃γ5)q, (6)

though we will only consider the left and right external
sources that are the ones needed to introduce the relevant
interaction. Note that in absence of external fields a mass
term for the charmed quark c remains.

At the meson level the coupling of external sources
requires a SU(4) realization that embeds the two weak
SU(2)L doublets into the effective Lagrangian. To pro-
ceed we construct a 4×4 matrix involving light flavor and
charmed pseudoscalars:

ũ†
R =


u(ϕ) i√

2FD

u(ϕ)D

i√
2FD

D† FD/F

 ,

ũL =


u(ϕ) i√

2FD

D

i√
2FD

D†u(ϕ) FD/F

 ,

Ũ = ũ†
RũL, (7)

and light flavor and charmed resonances:

R̃ =
(

R DR

D†
R 0

)
. (8)

However notice that, in accordance with the transforma-
tion properties explained above, light and charm flavored
pseudoscalar mesons enter with non-linear and linear re-
alizations, respectively. The role of the SU(4) realization
in (7) is to help us to find out the implementation of the
external sources, in particular the charged current that re-
lates the charm and light meson sector. Therefore, by no
means we are implying a seeming chiral realization with
four flavors. In (7) FD is the decay constant of charmed
mesons (defined analogously to the SU(3) octet decay con-
stant F that we identify with the decay constant of the
pion).

External chiral sources, suitable for the introduction
of weak interactions, are coupled through the definition of
covariant derivatives on the relevant objects:

∆µŨ = ∂µŨ − ir̃µŨ + iŨ �̃µ,

∇µR̃ = ∂µR̃ +
[
Γ̃µ, R̃

]
, (9)

with

Γ̃µ =
1
2

{
ũR [∂µ − ir̃µ] ũ†

R + ũL

[
∂µ − i�̃µ

]
ũ†

L

}
. (10)

The right- (r̃µ) and left- (�̃µ) hand external fields are de-
fined as an extension of the SU(3) case:

r̃µ =
(

rµ 0
0 γµ

)
, �̃µ =

(
�µ ωµ

ω†
µ δµ

)
, (11)

and their transformation properties are chosen to give the
covariant character, under weak gauge transformations,
to the derivatives in (9). On the G/H coset space there
are two Maurer–Cartan one-forms (left- and right-chiral)
related by parity:

u(∂µ − i�µ)u† = Γµ + (i/2)uµ ,

u†(∂m − irµ)u = Γµ − (i/2)uµ ,
(12)

of which the pullback to the space-time space defines the
axial vielbein uµ and the vectorial connection Γµ. Step-
ping down to SU(3), the standard right- and left-handed
currents are given by

rµ = eQ (Aµ − tan θWZµ) ,

�µ = 2MW

√
GF√

2

 0 VudW
†
µ VusW

†
µ

V ∗
udWµ 0 0

V ∗
usWµ 0 0


+ eQAµ + e

[
1

sin 2θW
QL − Q tan θW

]
Zµ, (13)

with Q = (1/3)diag(2,−1,−1) and QL = diag(1,−1,−1).
The charmed mesons require a covariant derivative on
the D(R) triplets transforming under SU(3)L ⊗ SU(3)R
as themselves:

∇µD(R) =
[
∂µ + Γµ +

i
2
(γµ + δµ)

]
D(R), (14)

where Γµ has been defined in (12) and the new chiral
sources are

γµ =
2
3
e [Aµ − tan θWZµ] ,

δµ =
2
3
eAµ + e

[
1

sin 2θW
− 2

3
tan θW

]
Zµ. (15)

Finally the left-handed field ωµ which drives the weak
charged current interaction between the charmed and the
light sector (as can be seen in (11)) is given by

ωµ = 2MW

√
GF√

2

 0
V ∗

cd

V ∗
cs

 Wµ, (16)

that under the chiral group G transforms as

ωµ
G−→gLωµ, gL ∈ SU(3)L. (17)
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We would like to emphasize that the electroweak gauge
bosons introduced here are not quantized; they behave as
classical fields and do not propagate.

With these definitions we can provide the most general
phenomenological Lagrangian involving mesons with u, d,
s and c quark content and external fields implementing
the weak chiral currents of the standard model. However
we are interested here in describing D�3 decays that are
brought about through charged current processes and we
will limit ourselves to this case. Hence we design all the
relevant SU(3)L ⊗SU(3)R gauge invariant operators. The
objects we need to carry on that construction are the ef-
fective field realizations in (1), (3) and (4), the covariant
derivative ∇µD(R) in (14), and the external charged source
realization ωµ in (16); all together with their transforma-
tion properties under the gauge chiral group. The resulting
effective action is

Seff =
∫

d4xLeff ,

Leff = LχPT + LRχPT + Lkin + LD + LDS

+ LDV + LDA , (18)

where LχPT is the SU(3)L ⊗SU(3)R chiral Lagrangian by
Gasser and Leutwyler [27], and LRχPT is the SU(3) La-
grangian of the resonance chiral theory [24]. Lkin collects
all the kinetic and mass terms of the charmed mesons. It
also contributes to the interaction Lagrangian through the
covariant derivatives. It reads

Lkin = (∇µD)†∇µD − D†MDD

+ (∇µDS)†∇µDS − (DS)†MDS DS

− 1
2
(DV

µν)†(DV )µν + (DV
µ )†MDV (DV )µ

− 1
2
(DA

µν)†(DA)µν + (DA
µ )†MDA(DA)µ , (19)

with DR
µν = ∇µDR

ν − ∇νDR
µ , R = V, A, and the diagonal

mass matrices MD(R) carry explicit SU(3) breaking. We
give here in detail the remaining terms of (18).
(1) Charmed pseudoscalars and light flavored mesons:

LD =
FD√

2

[
(∇µD)†

uωµ + ω†
µu†∇µD

]
+ i

α1F

2
√

2

[
D†uµuωµ − ω†

µu†uµD
]

+ i
α2m

2
D

4F

[
D†Vµuωµ − ω†

µuV µD
]

+ iβ1

[
(∇µD)†

VµD − D†Vµ∇µD
]
. (20)

(2) Charmed scalars, charmed pseudoscalars and light fla-
vored mesons:

LDS = iFDS

[(∇µDS
)†

uωµ − ω†
µu†∇µDS

]
+ β2

[
D†uµ∇µDS +

(∇µDS
)†

uµD
]

+ β3

[
(∇µD)†

uµDS + DS†uµ∇µD
]
. (21)

(3) Charmed vectors, charmed pseudoscalars and light fla-
vored mesons:

LDV =
FDV mDV

2
√

2

[
D†

µuωµ + ω†
µu†Dµ

]
+ iβ4mDV

[
D†

µuµD − D†uµDµ
]

(22)

+
βε

2mD
εµναβ

[
D†V µν∇αDβ +

(∇αDβ
)†

V µνD
]
.

(4) Charmed axial-vectors, charmed pseudoscalars and
light flavored mesons:

LDA =
FDAmDA

2
√

2

[
DA†

µ uωµ + ω†
µu†DA µ

]
+ iβ5mDA

[
DA†

µ V µD − D†V µDA
µ

]
. (23)

Here we have used Vµν = ∇µVν − ∇νVµ, ∇µVν =
∂µVν + [Γµ, Vν ], and mDi , i = S, V, A are typical mass
scales for every JP introduced to define the dimension-
less couplings αi, βi and βε. All together we have 12 a
priori unknown coefficients: the decay constants FD, FDS ,
FDV and FDA , and the couplings αi, i = 1, 2, βε and
βj , j = 1, 2, 3, 4, 5. Some information on the masses is
known and we may consider them as input in our study.
The interacting effective Lagrangian Leff provides a phys-
ically grounded parameterization of the D → P�+ν� and
D → V �+ν� processes without model-dependent assump-
tions and hence it is a suitable basis for the analyses of the
experimental data. It is clear, though, that the number of
unknown couplings seems to undertone our task. In the
construction of Seff we have exploited the rigorous con-
straints that symmetries of the underlying QCD enforce
on its effective field theory. However, symmetries give us
the structure of the operators but do not tell us anything
about their coupling constants. In the next section we will
come back to this point.

A thorough explanation of the features and properties
of the charm pieces of Leff is now required. The effective
action of QCD in this energy region, as any effective field
theory, has an infinite number of pieces. We have collected
only those that contribute to the D�3 processes with the
fewer number of derivatives. This is so because, even if the
included vertices can give also a contribution to the D�4
processes, for example, many other terms in the full effec-
tive action also contribute and should be taken into ac-
count. Though the chiral structure of the couplings might
be suspect for the production of two or more non-soft light
pseudoscalars, it should be correct for the vertices un-
der consideration where only one light pseudoscalar is in-
volved. This statement follows because, on one side, fields
are not observables and hence physics does not depend
on the field realization. In addition hadron effective fields
have very limited freedom in the structure of their cou-
plings and light pseudoscalars only can saturate Lorentz
indices through derivatives. Moreover the requirement of
chiral symmetry not only enforces the proper matching of
the effective action at low energies. Although chiral dy-
namics is often thought of as imposing constraints only
on low momentum processes, it also affects even the high
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energy behavior, a result worked out from analyticity [28].
As a consequence, the structure of the couplings in our ef-
fective action Seff is the most general one available for two-
and three-legs vertices and, consequently, they should be
able to describe both soft and hard outgoing light pseu-
doscalar mesons. A similar situation happens in the ac-
knowledged resonance chiral theory where, for example,
the a1(1260) → πγ process is described along the same
lines we use in our effective action. We conclude that the
structure of the vertices in Seff is the appropriate one to
deal with D�3 processes in the whole energy range.

Note that, contrarily to previous phenomenological La-
grangian approaches in [3,4], the construction of the effec-
tive action of QCD that we have carried out does not rely
on the heaviness of the charm quark but on the feature
that non-Goldstone bosons belonging to irreducible rep-
resentations of SU(NF ) can consistently be introduced in
an effective Lagrangian with the proper QCD symmetries
[21,22]. Besides, HQET is an excellent perturbative frame-
work to start with in the B meson sector where inverse
mass corrections are reasonably very small and provide
the relevant breaking to the heavy quark symmetry limit
of QCD. Though rather massive it is not clear that this
effective theory can be applied to the charm sector and, in
any case, perturbative corrections would be much bigger,
spoiling the convergence.

3 Form factors in D → P�+ν� decays

D�3 processes with a pseudoscalar P in the final state
are driven by a hadronic vector Hµ defined through the
amplitude of the decay

M (D → P�+ν�) = −GF√
2
VCKMuνγµ(1 − γ5)v�Hµ, (24)

and that corresponds to the matrix element of the relevant
vector hadronic current driven by the Wµ field:

Vµ = 2
δSeff

δωµ

∣∣∣∣
J=0

, (25)

because only this current contributes to the processes un-
der consideration. In (25) J is short for all external
sources. Hence we obtain Hµ by differentiating the gen-
erating functional of our effective action. Its Lorentz de-
composition is written out in terms of the two independent
hadron four-momenta in D(pD) → P (p)�+ν�:

Hµ
.= 〈P (p)|VµeiSeff [J=0]|D(pD)〉
= f+(q2)(pD + p)µ + f−(q2)(pD − p)µ, (26)

with q2 = (pD −p)2, thus introducing the two form factors
associated to the process. The exp(iSeff [J = 0]) term in
the definition of Hµ reminds us that the matrix element of
the current has to be evaluated in the presence of strong
interactions. In terms of these form factors the spectrum

of the semileptonic decay is given by

dΓ (D → P�+ν�)
dq2 (27)

=
G2

F|VCKM|2
384π3m3

D

√
λ(q2, m2

D, m2
P )

q6 (q2 − m2
�)

2

×
{

|f+(q2)|2

× [
(2q2 + m2

�)λ(q2, m2
D, m2

P ) + 3m2
�(m

2
D − m2

P )2
]

+ 3q2m2
�

× [
2Re(f+(q2)f∗

−(q2))(m2
D − m2

P ) + |f−(q2)|2q2] }
,

where λ(a, b, c) = (a+b−c)2−4ab and, though not explic-
itly stated, f±(q2) ≡ f±(q2)[D, P ]. When m� = 0 the spec-
trum only depends on the f+(q2) form factor and therefore
the dependence on f−(q2) is suppressed, particularly for
� = e.

3.1 Form factors from the effective action
in the NC → ∞ limit

It has been widely emphasized [29] that large number of
colors properties of QCD provide a guiding tool about ba-
sic features of the strong interaction dynamics and, there-
fore, we intend to perform the evaluation of the semilep-
tonic form factors, defined above, at the leading order
in the 1/NC expansion. To proceed we recall that the
hadron matrix element Hµ in (26) is related with the
three-currents Green function

Gµ ≡ 〈0|PD(x)PP (y)Vµ(z)|0〉
where PD(x) and PP (x) are the pseudoscalar sources with
charm and light-quark quantum numbers, respectively,
and Vµ(x) is the vector hadronic current in (25). The
1/NC expansion gives precise information on the Green
functions of QCD currents [23]. In the NC → ∞ limit the
three-point function Gµ is a sum of tree diagrams, with
free field propagators and local vertices. These diagrams
are of two types: in the first, one of the currents creates
two mesons, each of which is absorbed by the remaining
currents (see Fig. 1a), in the second each current creates
one meson, and the three mesons combine in a local vertex
(see Fig. 1b). Moreover one has to sum over all the pos-
sible propagating mesons. At the next-to-leading order in
the 1/NC expansion meson loops have to be taken into
account.

Coming back to our matrix element Hµ we see that the
pseudoscalar sources, creating the initial and final state
mesons, are fixed and, in consequence, the NC → ∞
limit tells us that we should consider the diagrams in
Fig. 1, where in (b) we must sum over the infinite in-
termediate single resonances with Vµ quantum numbers
and with local couplings to D and P mesons. Within this
approach and, as in the resonance chiral theory, we will
assume that nearby resonances provide most of the dy-
namics of the interaction; heavier resonance contributions
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Fig. 1a,b. Tree-level contributions to Hµ. The crossed circle
indicates the external source insertion Vµ and the black dot is
a strong interacting vertex. DV and DS are short for charmed
vector and scalar resonances, respectively

being suppressed because of their mass4. Hence to proceed
we evaluate the matrix element in (26) by approaching
exp(iSeff) ∼ 1 + iSeff . As we can see the whole strong in-
teraction, at this leading order, is reduced to the contribu-
tion in Fig. 1b and it is mediated by charmed resonances.
We obtain the following results:

M(D → P�+ν�) = −GF√
2
uνγµ(1 − γ5)v�

× a(D, P ) ·
[
f+(q2)[D, P ](pD + p)µ

+ f−(q2)[D, P ](pD − p)µ

]
, (28)

where a(D, P ) includes Clebsch–Gordan and Kobayashi–
Maskawa couplings:

a(D0, π−) = −
√

2a(D+, π0) = a(D+
s , K0) = V ∗

cd,

a(D+,K0) = a(D0, K−) = V ∗
cs. (29)

The form factors are given by

f+(q2)[D, P ]

=
1
2

[
FD

F
+ α1 − β4

FDV

F
· m2

DV

q2 − (MV [D, P ])2

]
,

f−(q2)[D, P ] =
1
2

[
FD

F
− α1

+ 2
√

2
FDS

F
· (β3 − β2)(m2

D + m2
P − q2) + 2β2m

2
P

q2 − (MS [D, P ])2

+ β4
FDV

F
· m2

DV

(MV [D, P ])2

× m2
D − m2

P − q2 + (MV [D, P ])2

q2 − (MV [D, P ])2

]
. (30)

The dependence on D and P in the form factors reduces to
the masses mD, mP of the decaying and outgoing hadron,
respectively, and MV [D, P ], MS [D, P ] appearing in the
propagators in (30). For the different channels we have

4 In addition notice that only a single triplet of vector reso-
nances with the appropriate quantum numbers is known, and
none of scalar resonances [12]

MV [D+, π0] = MV [D0, π−] = MV [D+
s , K0] = mDV ,

MV [D+,K0] = MV [D0, K−] = mDV
s

,

MS [D+, π0] = MS [D0, π−] = MS [D+
s , K0] = mDS ,

MS [D+,K0] = MS [D0, K−] = mDS
s
, (31)

where the notation for the masses is self-explanatory. From
the observed spectrum of the charmed mesons [12], DV

would correspond to D∗(2010)±, while DV
s corresponds

to D∗
s . The scalar charmed resonances DS and DS

s still
have not been observed.

It is well known that f−(q2) should vanish if the
SU(4)F symmetry is exact due to the conservation of the
vector current contributing to the matrix element in (26).
An inspection of our result for f−(q2) shows that to get
that vanishing result it is not enough to enforce mD = mP

and FD = F and, therefore, the couplings of our effective
action are not independent from each other in the SU(4)F

limit. This is not surprising because the construction of
our effective action Seff was concerned with symmetry re-
quirements from SU(3) where the strong chiral realization
lives and charmed mesons were introduced in a different
footing, as it should. It is more instructive, though, to
leave this discussion to a later stage and we will come
back to it.

A next-to-leading evaluation in the 1/NC expansion
would provide, typically, a 30% correction on our final
results for NC = 3, although in other applications in res-
onance chiral theory these are effectively smaller. In any
case our approach would be good enough for the analysis
of present and foreseen experimental results. The compu-
tation of next-to-leading contributions is not feasible at
the moment because we would need to consider the ef-
fective action at one loop, a non-trivial task beyond the
scope of this work.

3.2 QCD-ruled asymptotic behavior of form factors

The results that we have obtained for the D�3 form factors
in (30) are a consequence of the symmetry requirements
enforced by QCD on our effective action Seff . As com-
mented on at the end of Sect. 2, though, symmetries do
not constrain the coupling constants of Seff and, conse-
quently, further insight is needed. To proceed we recall
the basic features of effective field theory construction.
Essentially this is an ongoing procedure from the high
energy scale to the energy region of interest where, in
the stepping down, heavier degrees of freedom are inte-
grated out through an evolution process driven by both
the renormalization group and matching at the masses of
heavier particles, when these decouple. We do not explain
in detail the construction [30] but recall two relevant con-
clusions for our work. First of all, when a heavy particle
of mass M is integrated out, what results is a non-local
action. A later power expansion in p/M (p is a typical
momentum of the process) provides the final local non-
renormalizable effective action with derivative couplings,
as our Seff . This already tells us that the couplings in the
effective action are going to be suppressed by the masses
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of heavier degrees of freedom not present in our action.
The second conclusion of this procedure is that only the
short-distance information is incorporated into the cou-
pling constants of the effective Lagrangian [30]. This is a
powerful statement because, though we do not know how
to evolve from QCD down to the hadron level, it means
that we can, and should, constrain the couplings in accor-
dance with the high energy behavior of the theory. And
this indeed we know, because asymptotic freedom provides
a valid perturbative treatment of QCD at high energies.

To proceed we will study the asymptotic behavior
(q2 → ∞) of the form factors of the currents, endowing
consequently, relations between the unknown couplings of
Seff . The restrictions on the semileptonic form factors in-
volving pseudoscalars imposed by their asymptotic behav-
ior ruled by QCD were already worked out a time ago by
Bourrely, Machet and De Rafael [31].

As we have said above D�3 decays with one pseu-
doscalar in the hadronic final state are driven by the vec-
tor current Vµ. Then the form factors are related with
the spectral functions associated to the vector two-point
function5:

Πµν = i
∫

d4xeiq·x〈0|T (Vµ(x)V†
ν(0))|0〉

= −(gµνq2 − qµqν)Π1(q2) + qµqνΠ0(q2), (32)

that are defined by

−(gµνq2 − qµqν)ImΠ1(q2) + qµqνImΠ0(q2) (33)

=
1
2

∑
γ

∫
dργ(2π)4δ(4)(q − pγ)〈0|Vµ(0)|γ〉〈γ|V†

ν(0)|0〉,

where the summation is extended to all possible hadron
states γ with appropriate quantum numbers, and the inte-
gration is carried out over the allowed phase space of those
states. In (32) Π1 corresponds to the contributions of the
JP = 1− quantum numbers and Π0 to those of JP = 0+.
Between the infinite number of intermediate contributions
there is the one given by the semileptonic matrix elements
of D → P�+ν� given by (26) that we now write, not in-
cluding the exponential of the effective action explicitly,
as

〈0|Vµ(0)|D(pD)P (−p)〉

= η

[(
pD − pD · q

q2 q

)
µ

F1(q2) +
qµ

q2 F0(q2)

]
, (34)

where η is a Clebsch–Gordan coefficient and the new form
factors, defined for convenience in the following discussion,
can be related with f+(q2) and f−(q2) through

F1(q2) = 2f+(q2),
F0(q2) = (m2

D − m2
P )f+(q2) + q2f−(q2). (35)

5 The relevant flavor indices of the currents for every process
should be understood

They correspond to 1− and 0+ contributions, respectively.
Positivity of the spectral functions demands that every
contribution of the |γ〉 intermediate states adds up and,
therefore, the two-pseudoscalar |DP 〉 state in the unitarity
relation in (33) is just one of the infinite possible contri-
butions to the spectral functions, to which it provides a
lower bound. Performing the phase space integration we
obtain

ImΠ1(q2) ≥ η2

192π

√(
1 − Q2

0

q2

)3 (
1 − Q2

1

q2

)3

× |F1(q2)|2θ(q2 − Q2
0),

ImΠ0(q2) ≥ η2

16π

√(
1 − Q2

0

q2

) (
1 − Q2

1

q2

)
× |F0(q2)|2

q4 θ(q2 − Q2
0), (36)

where Q2
0 = (mD + mP )2 and Q2

1 = (mD − mP )2.
Perturbative QCD at leading order [32] determines

that

ImΠ1(q2)
q2→∞−→ 1

4π
,

ImΠ0(q2)
q2→∞−→ 0, (37)

and therefore, heuristically, one would expect that in the
asymptotic regime every one of the infinite positive con-
tributions to the spectral function vanishes. This is clearly
true for the J = 0 spectral function and a reasonable guess
for the J = 1 vector function, expecting that the sum of
the infinite vanishing contributions gives a non-zero finite
constant result. Accordingly, from (36) and (37), we de-
mand that the conditions

F1(q2)
q2→∞−→ 0,

F0(q2)
q2→∞−→ constant (38)

are fulfilled. In fact we could also choose that6 F0(q2) → 0
as q2 → ∞ but, while this is a mandatory guess for F1(q2),
in the J = 0 form factor this would be a stronger condition
that is not necessary, according to the heuristic discussion
above. From (36) we see that a constant asymptotic be-
havior is enough, and we keep to this softer assumption.
Nevertheless in both cases the constraints on the f+(q2)
and f−(q2) form factors are the same. Using (35) we note
that both f+(q2) and f−(q2) should vanish in the q2 → ∞
limit. Coming back to (30) we get the following relations
between the couplings of the effective action Seff :

FD

F
+ α1 = 0,

1 −
√

2
FDS

FD
(β3 − β2) − β4

2
FDV

FD

m2
DV

(MV [D, P ])2
= 0. (39)

6 We comment later on the consequences of this stronger
constraint
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Carrying these relations over to the expressions in (30)
we get the final parameterization of the form factors in
D → P�+ν�:

f+(q2)[D, P ] =
Ω[D, P ]

1 − q2

(MV [D, P ])2

,

f−(q2)[D, P ] =
m2

P − m2
D

(MV [D, P ])2
f+(q2)[D, P ]

+
Λ[D, P ]

1 − q2

(MS [D, P ])2

, (40)

where

Ω[D, P ] =
β4

2
FDV

F

m2
DV

(MV [D, P ])2
,

Λ[D, P ] =
(

FD

F
− Ω[D, P ]

)
×

(
1 − m2

D

(MS [D, P ])2
− m2

P

(MS [D, P ])2

)
− 2

√
2
FDS

F
β2

m2
P

(MS [D, P ])2
. (41)

These are our main results, and (40) shows the simplest
parameterization of f+(q2) and f−(q2) consistent with
QCD constraints and saturation by resonances. It is in-
teresting to note that while our result for f+(q2) coincides
with the phenomenological one-pole dominance approach
shared by other theoretical studies, f−(q2) gets a two-pole
structure coming from vector and scalar resonances. This
feature brings about into the 0+ scalar form factor F0(q2),
(35), the presence of a local non-resonant contribution in
addition to the one-pole scalar meson resonance. That lo-
cal piece is induced by the JP = 0+ time-like polarization
of the vector meson, through the cancellation of the vector
resonance pole introduced by the f+(q2) term in F0(q2).

Our discussion above relies on the high energy behav-
ior of the form factors in (38). As commented on, strictly
speaking, QCD enforces a constant (not necessarily van-
ishing) high energy behavior for F0(q2). However, stud-
ies [33] that assume factorization at high q2 and some
common lore physics intuition would demand the stronger
F0(q2)

q2→∞−→ 0 condition. Hence f−(q2)|q2→∞ would vanish
at least as 1/q4, requiring, consequently, a pure double
pole structure. This would enforce an extra condition on
the couplings of the effective Lagrangian, namely,

Λ[D, P ] =
m2

D − m2
P

(MS [D, P ])2
Ω[D, P ].

We call Λ[D, P ]FACT this value for Λ[D, P ]. The experi-
mental measurement of the f−(0) would provide, in con-
sequence, relevant information on the QCD structure of
the form factors.

As commented on above, in the SU(4)F limit f−(q2)
should vanish. We observe that this constraint determines

relations between the couplings that are only valid in that
limit. Hence we get Λ[D, P ]|SU(4) = 0, which provides a
relation between the couplings in this limit. However it is
clear that NF = 4 flavor symmetry is badly broken and
therefore this condition should not be taken seriously.

Pion pole dominance and SU(2)L ⊗ SU(2)R current
algebra provide the Callan–Treiman relation between the
K�3 from factors and the decay constant of the kaon, FK ,
which drives the K�2 decays [34]: fKπ

+ (m2
K)+fKπ

− (m2
K) =

FK/F , in the vanishing pion mass limit. In our case a
direct evaluation, from (40) and (41), gives

F0(m2
D − m2

P )
m2

D − m2
P

∣∣∣∣
[D,P ]

= f+(m2
D − m2

P ) + f−(m2
D − m2

P )|[D,P ]

=
FD

F
− 2

m2
P

(MS [D, P ])2 − m2
D + m2

P

×
[
FD

F
+

√
2
FDS

F
β2 − Ω[D, P ]

]
. (42)

Note that the evaluation point, q2 = m2
D −m2

P , is outside
the physical region. In the SU(3) chiral limit mP = 0 and
we have f+(m2

D) + f−(m2
D)|χ[D,P ] = FD/F as the Callan–

Treiman relation entails when applied to the four flavor
case. Although the mP = 0, P = π, K, limit in (42) seems
affordable, nothing can be said about the size of the cor-
rection because our lack of knowledge on the couplings.
However notice that a strong cancellation in the denomi-
nator of that term, (MS [D, P ])2 − m2

D + m2
P , if charmed

scalar resonances are near, could provide a sizeable con-
tribution.

4 Phenomenology of D → P�+ν�

As we said in Sect. 1 the FOCUS experiment (E831) at
Fermilab is foreseen to provide, in the near future, a thor-
ough study of semileptonic form factors of the charmed
mesons. Up to now several observables have been mea-
sured with rather good accuracy [14–20] but an exhaus-
tive study of the q2 behavior of the form factors, even the
dominant one f+(q2), is still missing.

The exclusive channels studied up to now are the
Cabibbo-favored ones D+ → K0�+ν�, D0 → K−µ+νµ,
and the Cabibbo-suppressed D+ → π0�+ν� and D0 →
π−e+νe, of which the branching ratios are measured rea-
sonably well. The study of the q2 structure of their form
factors, however, is much poorer. Notwithstanding, the
E687 experiment has published reasonable spectra for
D0 → K−µ+νµ [16] though we have been advised7 that
they are not corrected for background, resolution and ac-
ceptance effects and, consequently, should not be used to
analyze theoretical form factors.

7 Private communication received from Will Johns
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Table 1. Experimental values for |f+(0)| and m+ from D0 →
K−�+ν� decays

Experiment |f+(0)| m+(GeV)

E687 [16] 0.71 ± 0.04 1.87 ± 0.13
CLEO [18] 0.77 ± 0.04 2.00 ± 0.22

From an experimental point of view, the data are usu-
ally fitted to one-pole form factors:

f±(q2) =
f±(0)

1 − q2

m2
±

, (43)

though due to the m�-suppression pointed out in our dis-
cussion related with (27) f−(q2) is largely unknown. Other
parameterizations for f+(q2) are also possible. In partic-
ular, and due to pioneering modelizations [9], the expo-
nential behavior f+(q2) = f+(0) exp(αq2) has also been
fitted to the data. Nevertheless in the available range of
energies it is not possible to distinguish both parameter-
izations. However from experiment one gets α = (0.29 ±
0.07) GeV−2 > 0 [18] and, therefore, the asymptotic be-
havior of this latter parameterization is disastrous in ac-
cordance with our discussion in Sect. 3. Surely the expo-
nential form factor is not consistent with QCD. Moreover,
notice that a one-pole form factor only for f−(q2), as in
(43), is not allowed (unless f+(q2) = 0) because F0(q2) in
(35) would drive a JP = 1− transition, through the pole
of the vector resonance, which is forbidden for that form
factor.

Hence in f+(q2) there are two parameters to fit: f+(0)
and the pole mass m+. The experimental figures are col-
lected in Table 1. From our result in (40) we see that

f+(0)[D, P ] = Ω[D, P ]. (44)

Hence, from experiment, |Ω[D0, K−]| � 0.75 in excel-
lent agreement with the sum rules expectations [35]. On
the other side the obtained values of m+ are consistent
with the experimental value of mDV

s
= mD∗

s
= 2.1124 ±

0.0007 GeV, which is the one appearing in our form factor.
The study of the ratio Br(D0 → π−�+ν�)/Br(D0 →

K−�+ν�) provides information on the difference between
the f+(q2) form factors with K or π in the final state.
Experimental figures are given in Table 2. From our results
we predict

|f+(0)[D0, π−]|
|f+(0)[D0, K−]| =

m2
DV

s

m2
DV

� 1.05, (45)

if we take, from [12], mDV
s

= mD∗
s

and mDV =mD∗(2010)± .
The structure provided by our approach for f−(q2) in

(40) is much more complex. We have a two-pole structure
that would be very interesting to explore phenomenolog-
ically. Unfortunately, to our knowledge, the only known
experimental result on f−(q2) is provided by the E687
Collaboration [16] giving

f−(0)[D0, K−]
f+(0)[D0, K−]

= −1.3±3.6
3.4, (46)

Table 2. Experimental values for the ratio |f+(0)[D0, π−]|/
|f+(0)[D0, K−]|. We have used that (|Vcd|/|Vcs|)2 = 0.051 ±
0.001

Experiment |f+(0)[D0, π−]|
|f+(0)[D0, K−]|

E687 [15] 1.00 ± 0.12
CLEO [20] 1.01 ± 0.21

still compatible with zero, to compare with our result:

f−(0)[D0, K−]
f+(0)[D0, K−]

= −m2
D0 − m2

K−

m2
DV

s

+
Λ[D0, K−]
Ω[D0, K−]

. (47)

In our prediction the first term gives (m2
K− − m2

D0)/
m2

DV
s

� −0.72, agreeing in sign and size with the cen-
tral value in the experimental determination. If we take
Λ[D0, K−]FACT we would have a prediction for the ratio
in (47) in terms of masses of resonances and pseudoscalars.
Unfortunately the unknown scalar charmed meson mass is
also involved. Although we know very little about Λ[D, K]
from the phenomenology, determinations of f±(0) within
a sum rule approach provide information on Λ. With the
results of [35] we find Λ[D0, K−] = −0.05 ± 0.11 and
Λ[D0, π−] = −0.03±0.12, which is hence compatible with
zero. Accordingly the ratio in (47) is very well approx-
imated by the first term only and, in addition, we can
conclude that the contribution of the scalar resonances to
f−(q2) in (40) should be tiny. Moreover notice that the
sum rules predictions are at odds with Λ[D, P ]FACT un-
less the lightest scalar charmed resonance has a very large
mass.

In conclusion much more work is needed on the exper-
imental side to be able to compare our results with the
phenomenology. The spectrum of the semileptonic decays
of the charmed mesons should be measured with good ac-
curacy in order for us to confirm the structure of f+(q2)
and find out if the peculiar two-pole feature of QCD and
saturation by the resonances driven by f−(q2) are con-
firmed. With these analyses we could take a serious step
forward in the determination and comprehension of the
effective action of QCD in the charm energy region.

5 Other semileptonic decays

The effective action Seff in (18) allows us to evaluate all
semileptonic D�3 and D�4 decays. A thorough phenomeno-
logical study of them would make well known the cou-
plings of the operators in Leff that determine their
strength. In this first paper we have addressed the study
of the simplest processes D → P�+ν� with the conclusions
pointed out in Sects. 3 and 4. We stress here the interre-
lation between the couplings and other processes.

Decay constants of the mesons parameterize the tran-
sition from the meson to the hadronic vacuum. While
there is a reasonably adequate knowledge on the D decay
constant FD [12] from D�2 decays, the phenomenological
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Table 3. Couplings or combinations of couplings from Leff

appearing in the form factors of semileptonic decays of the
charmed mesons. As in the main text P is short for a light
pseudoscalar meson and V is short for a light vector meson

Processes Couplings

D → P�+ν� FD, α1, β4FDV , β2FDS , β3FDS

D → PP�+ν� FD, α1, β4FDV

D → V �+ν� α2, β1FD, βεFDV , β5FDA

determination of the decay constants of the resonances
FDS , FDV and FDA involves electroweak decays (such as
DR → �+ν�,...) that are tiny against the strong dominat-
ing processes. Therefore their experimental evaluation is
out of question. In addition βε, β1 and β5 only appear
in off-shell strong vertices. The strong couplings β2, β3
and β4 in Leff could be determined from on-shell strong
processes. Although the first two involve still unobserved
scalar charmed resonances, the β4 coupling, which drives
D∗ → Dπ, can be obtained through the recent observa-
tion of this decay [36]. From this width we get |β4| =
0.58 ± 0.07. Notice that β4 is involved in the determina-
tion of f+(0) (see (41) and (44)); however, we do not know
the value of the decay constant of the vector charmed res-
onances, FDV , and consequently we cannot predict f+(0)
in a model-independent way. Reversely, using its experi-
mental value we can determine |FDV | ∼ 240 MeV.

The role of the phenomenology of semileptonic pro-
cesses to get information on these couplings is relevant.
In these decays we usually have amplitudes that involve
one coupling, like the vertex in Fig. 1a, or the product of
two couplings, as the two connected vertices in Fig. 1b. A
close look at the LD, LDS , LDV and LDA Lagrangians
shows the couplings relevant for the different processes.
We collect them in Table 3. Notice that the D → V �+ν�

processes also contribute to the D�4 decays through the
strong conversion V → PP driven by LRχPT in (18), of
which the couplings are rather well known.

The foreseen good prospects on the experimental side
for the near future, together with the QCD constraints
from the dynamical behavior in the asymptotic limit (not
taken into account when writing Table 3), that also should
extend properly to the D → V �+ν� and D�4 processes,
should enable us to determine reasonably well the effective
action of QCD in this energy regime.

6 Comparison with the heavy quark
mass expansion

An alternative approach based also on a phenomenolog-
ical Lagrangian that tries to implement both HQET [2]
and chiral symmetry [27] has been employed during the
last years [3,4] in the study of heavy → light semileptonic
processes. This is a rigorous and systematic procedure that
deals with the construction of an effective action of QCD
through the constraints of heavy quark and chiral sym-
metries and that inherits from HQET the perturbative

expansion in inverse powers of the heavy quark mass, typ-
ically mq/MQ and ΛQCD/MQ, where mq and MQ are the
masses of light and heavy quarks, respectively.

This feature has several consequences. On the one side
the fast convergence of the perturbative expansion in the
study of B meson decays, because of the high mass of the b
quark, does not apply so clearly in the case of the D meson
decays. Moreover although the effective action is very sim-
ple in the MQ → ∞ limit, where the nice property of the
relation of the B and D processes arises, it becomes rather
cumbersome when next-to-leading terms in the mass ex-
pansion are included, consequently losing predictability,
unless some modelization hypotheses are assumed [5]. On
the other side, heavy-quark symmetry relations are use-
ful if the recoiling light constituents can only probe dis-
tances that are large compared with 1/MQ. This condition
is equivalent to the statement (v · v′ − 1) 
 MQ/ΛQCD or
q2 � q2

max = (mD − mP )2 in D → P�+ν�, where v and
v′ are the four-velocities of the initial and final hadrons.
Hence in this framework one evaluates f±(q2

max), a par-
ticular analytic continuation for the form factors (usually
a monopole structure given by vector meson dominance)
is assumed and, in consequence, a prediction for f±(0)
is given. It is necessary to emphasize that the prediction
of the form factors, given by the heavy quark mass ex-
pansion, at q2 �= q2

max includes input from outside the
perturbative treatment.

The effective theory framework that we propose in this
article, on the other hand, relies on well-known aspects
of the underlying QCD theory. We skip the heavy quark
mass expansion by applying the well-known procedure of
constructing a phenomenological Lagrangian [22] on the
basis of chiral symmetry (for the light flavors) and con-
sidering the charm flavored mesons as matter fields in
specific SU(3) representations that provide the interac-
tion. The phenomenological Lagrangian acquires the spe-
cific features of QCD by imposing the high energy behav-
ior on the form factors, a procedure that constrains the
couplings. This is an essential step in the construction of
the effective action in order to improve our Lagrangian
with another model-independent tool that facilitates the
matching at higher energies. This whole methodology is
analogous to the one used in the resonance chiral theory.
In addition the dynamical structure of the form factors
does not rely on assumed analytic continuations but on
the prediction of QCD in the limit of a large number of
colors (NC → ∞). As emphasized above this limit estab-
lishes the role of single resonances in the Green functions
and, consequently, in our form factors. Notice that the
procedure we are presenting may be extended systemati-
cally by including next-to-leading corrections in the 1/NC

expansion though, as in the heavy quark mass expansion,
one needs to perform the construction of the action at
one-loop level.

A complete comparison between our results for the
semileptonic form factors f±(q2) and those of the heavy
mass expansion at leading order (which we take from [4]
for definiteness) is not feasible because of the different in-
put included in their construction. The main difference
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arises from the high energy constraints on our effective
action. These have no clear meaning in the heavy quark
mass expansion when one perturbates around the heavy
quark mass. On the other side our results for the form
factors (40) include the contributions of scalar resonances
that have not been taken into account in the heavy mass
expansion approach. However it is easy to see that, switch-
ing off these scalar contributions and performing a heavy
meson mass expansion on our results in (40), we recover
the features of the heavy quark mass expansion results
in [4]:

f+(q2) + f−(q2) � 2
∆

MV
f+(q2),

f+(q2) − f−(q2) � 2f+(q2), (48)

where ∆ = MV − mD. Moreover, in this limit, our results
for f+(q2) coincide with those of that reference provided
that |β4FDV /2| = |gFD|, where g drives the D∗ → Dπ
decay in HQET. From this latter process we see that
|β4| = |g| and, in addition, with our definition of the decay
constants the heavy quark spin symmetry demands that
FDV = 2FD. Hence the consistency of our prediction for
the form factors f±(q2) with the heavy quark mass limit
is exact. However we stress that our results include the
mass corrections to that limit.

In Sect. 5 we got |FDV | ∼ 240 MeV. The heavy quark
spin symmetry demands that FD = FDV /2 ∼ 120 MeV
and, experimentally, the value of this decay constant is
still rather uncertain, FD = 212 ±139

109 MeV [12]. Notice
however that, as emphasized in [37], the spin-symmetry
breaking effects in the charmed sector could be as large
as 50%.

7 Conclusions

The study of the form factors of the QCD currents pro-
vides all-important information on the relevant effective
action of the underlying theory. Semileptonic decays of
the mesons are the main tool to analyze charged currents
and, while B and K decays have received very much atten-
tion, D decays, due to their position in the energy spectra,
lack a definite and sound framework in which to perform
this task.

We have proposed a model-independent scheme that
relies on the use of phenomenological Lagrangians gener-
ated through the symmetries of QCD and the dynamics
of its NC → ∞ limit. In this scheme the three lightest
flavors are introduced following the guide of chiral sym-
metry while the charmed mesons appear as matter fields,
following [21,22]. The procedure is analogous to the con-
struction of the resonance chiral theory [24]. Hence we ar-
rive at an effective field theory where the structure of the
operators is driven by the symmetries and their couplings
are unknown. In addition, the QCD-ruled asymptotic be-
havior of the form factors imposes several constraints on
those couplings. In this framework, we have computed the
form factors in the semileptonic D → P�+ν� processes
at leading order in the 1/NC expansion and we end with

the parameterizations in (40) that are our main result. It
is necessary to emphasize that this approach is different
from the one followed in [3,4] which relies on the heaviness
of the charmed quark, while here this consideration, with
its possible misconceptions in the charmed case, does not
appear. Moreover we do not need to assume a particular
structure for the analytic continuation of the form factors
because we rely on the dynamics driven by the NC → ∞
limit of QCD.

The experimental situation in D → P�+ν� is rather
poor though it is foreseen to be upgraded in the near fu-
ture. While our result for f+(q2) is consistent with the
experimental analysis, we would consider it very interest-
ing that, through the D → Pµ+νµ processes, something
could be said about the f−(q2) form factor, where we have
concluded that a two-pole structure is predicted in our
framework. The parameterization we propose to analyze
the experimental data by is then

f+(q2) =
aV

1 − q2

M2
V

,

f−(q2) =
bV

1 − q2

M2
V

+
bS

1 − q2

M2
S

. (49)

At present aV , bV (which is proportional to aV according
to our prediction in (40)) and MV are rather well known.
However nothing can be said about the size of bS or MS

(scalar resonances with charm have not been observed)
and, consequently, this should be an important task for
future research in this field. If one uses the definition of
the form factors in (35) instead, F0(q2) should show, in
addition to the one-pole structure induced by the scalar
resonances, a non-negligible local piece acting as a back-
ground. Once all these observables are measured we will
be able to constrain the effective action by better deter-
mining the strength of its operators.

A complementary study of the form factors in D →
V �+ν� within the effective action of QCD proposed in this
paper is under way [25].

Finally we have shown that, while it is not possible to
apply QCD directly to the study of these hadronic pro-
cesses, it is definitely feasible to extract model-indepen-
dent information on the form factors of the QCD currents
by exploiting and implementing the known features of the
underlying theory, such as the symmetries or dynamic be-
havior, providing a compelling framework to work with.
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